

Studies on shear bond behavior of FRCM applied to masonry substrates

Progetto DPC-ReLUIS 2022-2024 - WP 14

M.A. Aiello¹, F. Ceroni², L. La Mendola³, M. Leone¹, G.P. Lignola⁴, M. C. Oddo³, A. Prota⁴

reluis

UniPa

47%

For masonry specimens, the substrate typically has a compressive strength of 10-20 MPa (66%) and 20-30 MPa (13%), corresponding to the predominant use of clay bricks. The reinforcing mortar generally has lower compressive strengths, ranging from 10 to 20 MPa. A wider variety of the dry fibers are adopted as reinforcement. The most frequent failure modes are the tensile rupture of the fibers (type "F", 36.3%) and a mixed failure mode involving both slippage and debonding phenomena (20%)

Efficiency respect to the fibres tensile strength: 34-77%

Lime Based

840

Pietra Leccese

UniSalento

Numerical model

A numerical approach able to predict the bond behavior of FRCM to-masonry systems is proposed. The model is based on truss elements and nonlinear springs to simulate the fabric-to-matrix and composite-to-substrate interactions.

SI*AI

Slip [mm]

DOUBLE LAP SHEAR BOND TESTS

Numerical-experimental comparisons

η_{av} [%]

77%

47%

68%

45%

47%

829

Calcarenite Cementitious