# reluis Progetto DPC-ReLUIS 2022-2024 WP 6



## WP6 – Task 6.1, 6.3, 6.4: Integration of satellite and onsite data for structural monitoring

D. Foti (UR Politecnico di Bari) and V. Gattulli (UR Roma La Sapienza)



Urban context







#### **Temple of Minerva in Rome [1]**

| PS     | Max velocity<br>[cm/y] | Coheren<br>ce |
|--------|------------------------|---------------|
| 17585  | 0.0816                 | 0,553         |
| 152767 | 0.0618                 | 0,638         |

Table with points of max annual velocity



- **DINSAR** analysis, and mean annual displacement and velocity assessments
- Realization of FEM model validated by on-site monitoring (accelerometer acquisitions)
- Trend analysis of the displacements of Persistent Scatterers (PSs) with maximum annual velocity for the ascending and descending orbits
- Identification in ascending orbit of an irregular trend with a permanent displacement in 2015, for event independent





2<sup>nd</sup> mode 1<sup>st</sup> mode

LOCAL LEVEL

(a)  $V_{LOS,ASC}$ 

of seasonal thermal variations

**□**FEM model updating: numerical analysis of the base failure that reports damages consistent with reality

### **Marcus Aurelius Exedra Hall (Capitoline Museum)** [2]

(b)  $V_{LOS,DES}$ 

**GLOBAL LEVEL** 







**DINSAR** analysis and displacement assessment (from global to local level)

BIM As Design derived from the technical drawings • On-site measurements: TLS survey and point cloud model



#### Conclusions

It is advisable to perform periodic terrestrial laser scans to observe a deformation trend comparable to the satellite data. These scans would provide high-resolution, accurate representations of the structure over time, allowing for a more detailed analysis of any changes. By integrating this ground-based data with satellite observations, our understanding of structural behavior would be enhanced, improving monitoring capabilities and ultimately leading to more effective maintenance strategies and informed decision-making processes.

- 1. Sabbà, M. F., Lerna, M., Diaferio, M., & Foti, D. (2021). Satellite Data for Structural Monitoring of Historical Building: The Temple of Minerva Medica in Rome. WSEAS Transactions on Environment and Development, 17, 1284-1289 10.37394/232015.2021.17.117
- 2. De Iuliis, M., Crognale, M., Potenza, F. et al. (2024). On the combined use of satellite and on-site information for monitoring anomalous trends in structures within cultural heritage sites. J Civil Struct Health *Monit*, 14, 1173–1190 <u>https://doi.org/10.1007/s13349-024-00780-2</u>

