

Integrazione di approcci e dati eterogenei per il monitoraggio strutturale a diverse scale di osservazione

R. Ceravolo, S. Coccimiglio, E. Lenticchia, G. Miraglia, L. Scussolini, C. Surace

Task 6.1

UR7

MONIOTORING METHODOLOGY

Jan 2018 Jan 2019 Jan 2020

Jan 2017

- The process begins with structural health monitoring, collecting data such as InSAR displacement, temperature, and natural frequency to estimate the material behavior of the structure.
- A high-fidelity model predicts the natural frequencies of the structure, comparing them with experimental ones. The residual difference is used to update the digital twin, which generates a predicted displacement field calibrated using InSAR data.
- If InSAR displacements are not provided over the structure, foundation settlement is calculated through data interpolation. The soil-structure's response is then statistically analyzed (mean and standard deviation), and the results are fed back into the monitoring system, closing the loop for optimization and calibration.

INTEGRATED STRUCTURAL HEALTH MONITORING MODEL

Experimental frequency, the residual between the model and experimental frequency, the mean of soil settlement, and the standard deviation of soil settlement can be **combined** into a single monitoring model using a **normalized elliptical equation via** a stochastic oscillator. This approach correlates structural anomalies with soil anomalies. The digital twin can generate data on these behaviors, which can be provided to a **classifier** to assess **how anomalies correlate** as experimental data is collected.

