Multi-Stripe Analyses and D/C

 $Tr = 10$ anni $Tr = 50$ anni $Tr = 100$ anni $Tr = 250$ anni $Tr = 500$ anni $Tr =$ 1000 anni $Tr =$ 2500 anni $Tr =$ 5000 $Tr =$ 10000 anni $Tr =$ 100000 anni

Return period [years]

0% 10%

- RC tie beams at upper level, stiffening of diaphragms with RC slab, mortar injections, plastering of selected piers with FRCM (retr. 1 Na C)
- retr. 1 Na C + plastering of all piers with FRCM, steel framing of openings (retr. 1 Aq C)
- RC tie beams at upper level, stiffening of diaphragms with RC slab (retr. 0.8 Na C)
- retr. 0.8 Na C + mortar injections (retr. 0.8 Aq A)
- retr. 0.8 Aq A + plastering of all piers with FRCM (retr. 0.8 Aq C)

Building 1 interventions:

- RC tie beams at upper level, stiffening of diaphragms with RC slab (retr. 1 Na C)
- Retr. 1 Na C + plastering of piers with FRCM (retr. 1 Aq C)

Building 2

Without soil-foundation-structure interaction (SFSI) With soil-foundation-structure interaction (SFSI)

Case-studies Design of retrofit interventions

Assessment of seismic performance

Failure rates and fragility curves

• Equivalent-frame strategy (TREMURI software)

Building 2 interventions:

Seismic risk of retrofitted existing buildings

Giulia Angelucci¹, Andrea Belleri², Davide Bellotti³, Stefano Bracchi³, Andrea Brunelli⁴, Guido Camata⁵, Luca Capacci⁶, Serena Cattari⁴, Francesco Cavalieri³, Bruno Dal Lago⁷, M. Teresa De Risi⁸, Luca De Sanctis⁹, Stefania Degli Abbati⁴, Gaetano Della Corte⁸, Raffaele Di Laora¹⁰, Chiara Di Salvatore⁸, Marius Eteme Minkada², Maria Iovino⁹, Sergio Lagomarsino⁴, Gennaro Magliulo⁸, Rosa M. S. Maiorano⁹, Vincenzo Manfredi¹¹, Enzo Martinelli¹², Angelo Masi¹¹, Fabrizio Mollaioli¹, Francesco Nigro¹², Andrea Penna^{3,13}, Giuseppe Quaranta¹, Paolo Riva², Maria Rota³, Enrico Spacone⁵, Marco Terrenzi⁵, Gerardo M. Verderame⁸

¹Sapienza University of Rome, ²University of Bergamo, ³European Centre for Training and Research in Earthquake Engineering, ⁴University of Genoa, 5University of Chieti-Pescara «G. D'Annunzio», ⁶Politecnico di Milano, ⁷Insubria University, ⁸University of Naples «Federico II», ⁹University of Naples «Parthenope», ¹⁰University of Basilicata, and the siturersity of Salerno, ¹³University of Pavia

- Building 3 Building 4
	- Sites: L'Aquila (Aq)/ Naples (Na), soil A/C

PRECAST REINFORCED CONCRETE BUILDINGS

Build.

MASONRY BUILDINGS

1. Case study buildings *without longitudinal*

• R2R software

Build. 3 soil C

Building 3 interventions:

• Type A: mortar injections, tie-rods in perimeter walls (retr. 0.8 Aq A)

1. Case study buildings
3- and 6-storey RC buildings, designed for gravity loads only (GLD) – in Naples – or according to obsolete seismic code (SLD) – in L'Aquila – have been analyzed, in bare (BF) infilled (IF) and pilotis (PF) configurations.
1980 *beams 1*
a^{1r} *ilotis (PF) configurations.*
|
| $\overline{\text{or}}$ $\overline{\text{gra}}$ *without longitudinal*

- Type B: Type A + stiffening of diaphragms, re-pointing of mortar joints, FRCM on internal walls (retr. 1 Aq A, 0.8 Aq C)
- Type C: Type B + FRCM on all walls (retr. 1 Aq C)

Building 4 interventions:

- Type A: mortar injections in piers (retr. 1 Aq A)
- Type B: mortar injections in piers and spandrels, FRCM on selected piers in X and Y dir. (retr. 0.8 Aq C)
- Type C: mortar injections in piers and spandrels, FRCM on piers in X dir., steel exoskeletons in Y dir. (retr. 1 Aq C)

 $Model00$

REINFORCED CONCRETE BUILDINGS *bare frames (BF) uniformly infilled frames (IF) pilotis frames (PF)*

Conclusions: The study suggests that local retrofitting, especially at the roof level, can improve seismic resistance in existing buildings. However, retrofitting strategies should be tailored to site conditions and structural features.

4. Analysis of retrofitted buildings

Example: 6-storey SLD building. Pushover results, used to obtained Capacity (C) at Usability Prevention Damage (UPD) and Global Collapse (GC), and Multi-Stripe Analysis to obtain Demand (D)

3. Intervention Strategies

2. Code-based assessment (safety indexes)

N.B. *SI = safety index; SD LS = Severe Damage Limit State; DL LS = Damage Limitation Limit* State; DF = 1st ductile failures; SF = 1st shear failures; JT = 1st joint tensile failures; JC = 1st *joint compressive failures.*

N.B. *The application of Strategy "B" is required especially by the "6-SLD" structure, as it is* **1950s -'60s 1970s** *characterized by the lowest safety indexes both for DF at SD* **1980s-'90s** *with longitudinal beams LS and at DL LS. Exoskeletons without longitudinal beams*

Pre-stressed steel strips and local integrative jacketing for

JT and JC, respectively.

bare frames (BF) uniformly infilled frames (IF) pilotis frames (PF)

120+80 mm

1950s-'60s 1970s

STRATEGY "B" – steel exoskeletons *two-leaf infill walls 150+80 mm two-leaf infill walls*

without longitudinal

two-leaf infill walls

S

1950s-'60s 1970s *bare frames (BF) uniformly infilled frames (IF) pilotis frames (PF)*

-
-
-

without longitudinal beams

1980s-'90s *with longitudinal beams*

Approach to the retrofit design

- ❑ Response spectrum analysis (behavior factor equal to 1.5). Safety determined from demand/capacity ratio (*ζ_E)*
- ❑ Design of the interventions:
- Roof connections: design load equal to 1.3 times the demand from analysis.
- Connections between cladding elements and main structure
	- Out-of-plane design load evaluated as for secondary elements [§7.2.3 NTC18]
	- In-plane displacement demand derived from elastic spectrum analysis.
- Capacity design of the connections, etc., based on the capacity of the columns.

MSA → D/C (elements/connections; UPD and GC) → Fragility curves and Failure rates

Failure rates

Nonlinear modelling + Multi Stripe Analyses

Objective: The study aims to assess the seismic risk of single-story existing RC industrial buildings, both in their nonretrofitted and retrofitted states. The research is conducted by four units: EUCENTRE (Building EE1), UNIBG (Building EE2), UNINA (Building EE3), and UNINSUBRIA (Building EE4).

Both the structural and non-structural elements were explicitly modelled

- **Column Base (plastic hinge)**
- **Connections**
- Roof element-to-beam
- Panel-column
- Panel-beam • Panel-column

Hysteretic models

- Columns and dowels: Modified Ibarra-Medina-Krawinkler
- Friction connection: Coulomb Friction
- New connections: Elastoplastic

Case study buildings: single-storey precast buildings derived from RINTC-Project

two-leaf infill walls 150+80 mm system resisting seismic forces. In **Scenario 1**, exoskeletons are designed as the sole structural

1950s-'60s

5. Failure rates

Lastly, failure rates have been obtained by R2R software, based on D/C ratios previously obtained.

Scenario 2 - BF

Structural model λ_F at UPD λ_F at GC **6-SLD Scenario 1 - B 6-SLD** Failure rates - Strategy "B" $2.2 \cdot 10^{-6}$ $1.7 \cdot 10$

N.B. *in the case of "Strategy B" scenarios, it was possible to evaluate a failure rate only at UPD, due to their very modest D/C values at GC.*

STRATEGY "B"

6. Conclusive remarks

- Retrofitting mitigates the fragility compared to the as-built condition, especially in SLD buildings and BF configurations.
- For GLD buildings, λ_f reduction falls within 48-60% while SLD cases show a higher range (66-84%);
- Retrofitted buildings still exhibit lower seismic performance at GC compared to newly designed buildings.
- Failure rates of retrofitted SLD buildings may exceed Eurocode 8 threshold, while GLD buildings generally meet this target.

In **Scenario 2**, the intensity of the design base shear force is the half of the one corresponding to Scenario 1 to modulate the stiffness and resistance of the new steel structure relative to the existing RC frame structure.